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I am grateful to G. S. Kulikov for drawing this problem to my attention. 
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The solution of the system of equations of plane simple waves in a Prandtl-Reuss isotropically 

work-hardening medium is reduced in general (without any assumptions on the form of the work-hardening 

function and the state in front of the simple wave) to the investigation of an ordinary differential equation of 

the first order. In the special case of linear work-hardening, and also without work-hardening, the solution 

of the system of equations for plane simple waves is obtained in quadratures. The problem of an oblique 

shock on a prestressed half-space with arbitrary uniform constant stresses is solved for a linearly 

work-hardening medium. 

FOR THE Prandtl-Reuss equations, the corresponding system of ordinary differential equations of 
plane simple waves sometimes splits (because the component equations are uncoupled) and thus 
admits of a straightforward analysis. Plane simple waves propagating along the x1 axis of the 

tPrikl. Mat. Mekh. Vol. 56, No. 1, pp. 124-133,1992. 
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Cartesian system of coordinates xi have been studied [l-4] for the case u3 = 0, u13 = 0 (vi and ai; are 
the velocity and stress components). The investigation of these waves has been reduced to 
quadratures (an ideal elastoplastic medium with the supplementary condition uz2 - u33 = 0 [ 11, a 
linearly work-hardening medium with u 22 = u33 = 0 [2]) or to the analysis of an ordinary differential 
equation-numerical for an isotropically work-hardening medium with u22 - u33 = 0 [3] or qualita- 
tive for an ideal elastoplastic medium with u22 - u33 # 0 [4]. 

Unlike previous studies [l-4], the present investigation does not impose any restrictions on the 
form of the initial stressed state of the half-space. The proposed method produces a solution using 
only three families of plane curves. Numerical solution of the ordinary differential equations of 
simple waves is thus avoided. 

1. REDUCTION TO AN ANALYSIS OF AN ORDINARY DIFFERENTIAL EQUATION 

We consider the plane-wave motion of an elastoplastic medium in the framework of geometrically 
linear theory. The loading surface equation is assumed in the Mises form and the work-hardening 
parameter is the plastic strain work (the superscript d denotes the tensor deviator and E,,P are the 
components of the plastic strain tensor) 

‘lSQJ,i d = f (x) (&t = o,@%I=) (1.1) 

When condition (1.1) is satisfied, we accept the associated law dEiy = dAuijd, dX z 0 and Hooke’s 
law for elastic strains. For this medium, the system of plane-wave equations has the form (p, K are 
the constant moduli of elasticity) 

avi auil aakk 
Pox=-yg-’ - at =3K$- 

(l-2) 

li@i,dUijd = f (X), -!$- = +- 2j (X) 

If the front of the wave ~23 = 0, u22 - u33 = y. = const (the first equality always can be achieved 
by rotating the system of coordinates about the x1 axis), then from the third relationship in system 
(1.2) we obtain 

ugs = 0, (722 - a33 = yoP-2Mh (1.3) 

In what follows, we assume that these relationships are satisfied. 
Let us investigate the simple waves of the system (1.2), i.e. solutions of the form 

uij @ (x9 t))7 vi (0 (59 t))7 h (0 (59 0)~ X (0 (29 0)~ t G t1 

The system of ordinary differential equations describing the simple waves has the form (prime 
denotes the derivatives with respect to 0) 

~1’ (K -t 413p -- p) = -2llu,,%. 

Vj’ (p - p) = -2l.Q& (j = 2, 3) 

ati’ (K + 4!3~ - p) = GKuu,,dh 

ulrd (K + 4/3p - IJ) = 2l,4 (p - K) ulldh 

Ulj’ (/l - p) z 2!lUljph’ (j = 2, 3) 

3/4 hd)2 + 0123 4 013” + ‘14 bJ22 - u33)2 = f (x)9 x’ = VA 

(1.4) 

Here c = -e,‘&’ is the characteristic velocity and p = poc2 is obtained from the characteristic 
equation 
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-I- 6 + Y8i.J - P) bJ1a* + %,*)I = 0 (1.5) 

System (1.4) has a number of obvious first integrals. Specifically, the fifth and the second 
equations, respectively, give da&fur2 = ui&i2, dvgldvz = CJ&~~~, whence we obtain by integ- 
rating 

%s = WrltLI us = 010 (Us - uzO) + ugo, c&o = oiso/ur20 (I-6) 

where the constants v2*, vs*, uizO, ulso are the values of the ~rr~sponding quantities in front of the 
wave. 

The last equation in (1.4) is also integrated: 

?V=+s* = ‘p (x) (x = y (A)) (1.7) 

Thus, for system (1.4) there are five first integrals: (1.3), the last but one relationship in (1.4), 
(1.6), and (1.7). 

System (I .4) can be conveniently rewritten in dimensionless variables 

%I * = uulko, sll = qld/k,, slj = olj/k,, (j = 2, 3) 

h* = 2yh, X* = x12p, Vi* = 
v 

-~~~ (i=I, 2,3), C* .= v'$ C (1.8) 

where ko is the initial yield point. Henceforth, the asterisks are omitted. 
In these variables, the loading surface equation is written, using (1.3) and (1.7), in the form 

%%,* + s1*2 + s19” = 1;’ (X; yo) (1.9) 

The characteristic equation (1.5) takes the form 

(IO-l- %-PW-PP)- ~~;~~)f ((1 -Ph? + 

+ Go + ‘/II - P) @I%* + %a = 0, 20 = K/p (1.10) 

By (1.9), the dependence of p on si2*+s1s2 can be eliminated and therefore the characteristic 
velocity c depends only on the variables sii*, A and the initial parameter y. . Then the fourth 
equation in (1.4) splits from the system. In fact, it takes the form 

(1.11) 

and in principle it determines the dependence @ii0 is the value of sll for A = 0) 

$11 = Slf (A: QlOI Yo) 

Taking this dependence into account, we rewrite the remaining differential equations of the 
simple-wave system (1.4) in the form 

From these equations we obtain vl, v2 and ull by quadratures; the variables s12, s13 and v3 are 
determined from the final relationships (1.6) and (1.9). 

Thus, the investigation of the system of simple-wave PrandttReuss equations reduces to the 
solution of a first-order differential equation and the evaluation of the integrals that depend on this 
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equation. The result is true without any assumptions regarding the form of the work-hardening 
function f(x) in front of the simple wave. Our proposition can be used to simplify the numerical 
analysis of simple waves, e.g. in the problem of the breakup of an arbitrary shock. 

2. REDUCTION OF SIMPLE WAVE EQUATlONS TO Q~A~RAT~~~S FOR LINEAR 
WORK-HARDENING 

For a linearly work-hardening material, the function f(x) in (1.1) has the form f(x) = ko2 + p. xI 
where ke is the shear yield point and I3 = const >O. Consider the simple wave propagating in this 
medium in a uniform stressed state with the stresses ull“, ur2’, orso, uz2’, CQ~“. Such simple waves 
are used in what follows to solve the problem of an oblique shock in a half-space. We will show that 
the variation of all quantities in the simple wave is determined by quadratures. In particular, this 
assertion is true for an ideal elastopiastic medium (f3 = 0). 

Using formulas (1.8), we introduce the dimensionless variables Xii, vi (i = 1, 2, 3), oll, x, h, and 
also the variables 

r = (~~~~~2/~, z = (or22 + cr$)/f (2.1) 

We will show that if r or 7 is chosen as the simple-wave parameter, then the investigation of the 
simple wave reduces to quadratures. Indeed, from the last three relationships (1.4) it follows that 
the variables Y and 7 are related by the equation 

dr 
dt= 

p--o P -1 f 

lo+‘/*-p -_a l-p- - ==Q)Jr,z), la ‘* r 

where p is the root of the characteristic equation 

(6 + % - P) (1 - p) - b (1 - P) r - b (1, + */a - p) z = 0, 

b = 21.142P + P) (2.3) 

Let pi = Fi (r, 7) (i = 1, 2) be the roots of Eq. (2.3). Solving these relationships for r and 7, we 
make the following change of variables in Eq. (2.2): 

(I, + l/J by = (l* -I- ‘lQ - pi) (1, + */a - P2) 

& 4- %) bx = 4 - $4 (4 - PJ 
(2.4) 

It thus takes the form of a Riccati equation 

(a f&l + %) + 6) ~P~~~P* = w + 4 Pl - I, - 0 V* + *fs)) (1 - PlY(~ - 

- Pal - ((1 + 4 Pl - 4 v, -I- % - PN, + % "921 (2.5) 

This equation has been written for fast simple waves: p in Eq. (2.2) has been replaced with the 
large root pt of Eq. (2.3); slow simple waves are investigated similarly. 

In this case, a particular soiution of Eq. (2.5) has the form 

a/, (1, + va - PJ (43 + 4/s - PA - (1 - PI> v - Pd = vrl + %Jb 

and it can be used to obtain the general solution of this equation: 

Pl = { s” b 0) cp @) & + %cp (Pilo)}-* v (PA “f- % IPal 
YtO 

(~1” and ~2’ are the initial values of Pi and pz). 
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This solution of Eq. (2.5) and relationships (2.4) produce the dependence 

r = r 0; ro9 rO) (r. = (~~~9~~ r. = (si2Y + (~~~9~) 

Henceforth we will assume that this dependence is known. 
We will show that the variables s12, s13, y, A, x are expressible in terms of r and 7. Indeed, 

integrating (1.7) we obtain 

h = $1 111 (f (x) Ic,-y (2.6) 

Solving the last but one equation in (1.4) for f(x) and using (1.3) and (2.6), we obtain 

kz + j3211x -= k,2h (r, z), 12 (r, .c) = (‘/2~~olko)2(1-“) (1 - 3/,r - t)-(lA) 

Substituting (2.7) and (1.6) into Eq. (2.1) for the variable 7, we obtain 

slq2 = ko2 (1 + ao2)-’ TA (r, z) ., 

From the first integrals (1.3), (2.6) and (2.7), we have 

p = y3 (‘2 (r, ‘t))-a 

(2.7) 

It remains to express the variables u ii, v1 and v2 in terms of r and T. From the third, fourth, and 
fifth equations in (1.4) and relationship (2.7) we obtain, for instance 

(2.8) 

The variables v1 and v2 are similarly expressed in the form of quadratures. 
Thus, in a linearly work-hardening medium, the variation of all quantities in the simple wave is 

expressed in quadratures. 

3. INTEGRAL CURVES OF SIMPLE WAVES 

To solve the oblique shock problem, we need to know, for any initial state, the behaviour of the 
projection of the simple-wave integral curves on the plane r, 7; ull, s = ds122 + s132 ; all, 7. The 
projections of the integral curves on the r, r plane are obtained by solving Eq. (2.2), which has been 
reduced to quadratures in Sec. 2. Consider the projections of the integral curves of the slow simple 
waves (the projections of the integral curves of the fast simple waves are constructed similarly). 
They form a one-parameter family of curves (with the parameters ra’-the coordinate of the 
intersection of the integral curve with the r-axis). 

Figure 1 plots the results of calculations for 2l~. = 1.54 x lo5 mPa, 3K = 5 x lo5 mPa, l3 = 1.1 x lo4 

r 4/3 
FIG. 1. 
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F1c.2 

mPa, ka = 4.50 mPa; in all the figures, the dashed curves correspond to fast simple waves and the 
solid curves to slow simple waves. The direction of change of the quantities in the simple waves is 
shown by arrows. It is determined by the condition of activity of plastic loading aA/at~O. 

For a slow simple wave, the dependence of ull and s on the variable T and the initial values uii”, 
ro, 7. is determined, respectively, from (2.8), (2.1) and (2.7) in the form 

u11- allo = VPYO (ro, ~oY~~)‘-~ IF1 hi’ rol (ro, ToI) - PI (To; rol (ro, To))1 

T E [O, II 

s = (l/pyo (rot ~~)!k,)‘~ II - “14r (r; rol (ro, a,), 0) - zl-%(l-bW~ 

(3.1) 

In these relationships, the function ro’(ro, TV) is determined using the family of curves shown in 
Fig. 1 (rol is the coordinate of the point of intersection of the curve passing through the point r. , 7. 
with the r axis). The function yo(ro , TV) is determined from the last but one relationship in (1.4). 

By relationships (3. l), the projections of the simple-wave integral curves on the ull , s plane form 
a three-parameter family of curves with the parameters ulio, r. , TV. However, the dependence on 
some of the parameters is quite simple. We will show that any curve from this family is in fact 
constructed from a one-parameter family of curves. 

We will only consider the case when sgnsii’>O, because by (2.8) the projections of the 
simple-wave integral curves on the ull, s plane are symmetrical about the s axis for sgnsliO>O and 
sgnsii’<O. 

Consider the one-parameter family of curves (with the parameter rol) shown by solid curves in 
Fig. 2 (for p = 0) and Fig. 3 (for cy ~0): 

u 11 = F (T; r:), s = [I - 3/,r (7; ~01, 0) _ z]-Ml-b),% 

6, 
FIG. 3. 

(3.2) 
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The change in s is bounded by unity for p = 0 [by the last but one relationship in (1,4)] and is 
unbounded for p >O. The curves in Fig. 3 have vertical asymptotes. The right-most curves in Figs 2 
and 3 correspond to rol = 4/3; the left-most curves (those that merge with the s axis) correspond to 

tbl = 0. For p = 0 and practical values of TO the range of ull is of the order of 0.25. 
By virtue of relationship (3.1), the projections of the integral curves of the slow simple waves on 

the oll, s plane are obtained from the family of curves (3.2) by a sequence of transformations: a 
shift along the ull axis by a distance -F(T,; rol), a homothety centred at zero with the coefficient 
(%~o/ko)l-b (for p = 0, this homothety degenerates into the identity transformation), and a shift 
along the =11 axis by a distance (riXo. 

Relationships (2.2), (2.8) and (3.1) lead to the follo~ng properties of the slow simple wave. The 
quantities wll, s vary monotonically in the slow simple wave and Aoll >O and is bounded; dr >O 
and for p = 0 it is also bounded, while for p>O it increases without limit. 

For the fast simple wave, we obtain from the third and fourth relations in (1.4) and equality (2.7) 
(it is better to use the variable r as the parameter for fast simple waves) 

t;; (r, To1 (rot x0)) = S Y&,7 (t;zol(ro, To), O))dt 
0 

701 (r. , TV) is the coordinate of the point of intersection of the integral curve of Eq. (2.2) through the 
point r. , 7. with the 7 axis. 

The one-parameter family of curves (with the parameter 70~) necessary to obtain the projections 
of the integral curves of the fast simple waves on the ull, s plane is given by 

(Jll -- F, 0”; Q), s -: I1 - ?.,r - T (r; Q, O)l-~(l-w: (r: To’. 0) (3.3) 

This family is shown by the dashed curves in Figs 2 and 3. 
In the fast simple wave (like the slow wave), ull and s vary monotonically, hull >O and increases 

without limit, while As < 0 and is bounded (s+ 0 as r--, 413). 
The projections of the integral curves of the slow simple waves on the ell, ‘I plane are obtained 

similarly, because in the eil, s plane the one-parameter family (3.2) gives the three-parameter 
family (3.1). These projections are obtained from the one-parameter family of curves (with the 
parameter t-0’) defined by the first relationship in (3.2) for a composition of two parallel translations 
and stretching. The projections of the integral curves of the fast simple waves are similarly obtained 
from the one-parameter family of curves (with the parameter ~0~) defined by the first relationship in 
(3.3) and the known relation r = r(T; 701, 0). 

These two one-parameter families of curves are shown in Fig. 4 as calculated from formulas (3.2) 

%I 

FIG. 4. 
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and (3.3) for p>O. For B = 0, we have s = ~l’~, and it is therefore sufficient to construct the 
projections of the integral curves on the crll, s plane. 

Thus, the projections of the simple-wave integral curves on the ull, s and ull , T planes are 
obtained from the one-parameter families of curves shown in Figs 2-4. 

4. THE PROBLEM OF OBLIQUE SHOCK ON A PRESTRESSED ELASTOPLASTIC 
HALF-SPACE 

Let us investigate the motion of a linearly work-hardening medium (ideally plastic for p = 0) with 
constant homogeneous initial stresses aiio that fills the half-space x>O. Normal and tangential 
stresses alif, uizf, ui3f are applied to the surface of the half-space. These stresses arise at the instant 
t = 0 and thereafter remain constant. 

All the constants in Eqs (1.2) and the initial conditions of the problem have the dimensions of 
velocity, density, or stress. Therefore only one dimensionless combination can be formed from x 
and t [for instance, xt-1(p/po)-“2]. The problem is self-similar. 

In the half-space x>O, the self-similar solution consists of elastic shocks (Ji is the longitudinal 
wave and J2 is the transverse wave) and simple plastic waves (Si is the fast simple wave and S2 is the 
slow simple wave) that propagate from left to right; these waves are separated by regions in which 
all the parameters are constant. The propagation sequence J1S1J2S2 is established by Mandel’s 
theorem [5]. 

We will show how to solve the oblique shock problem using the portraits of the simple-wave 
integral curves from Sec. 3. We use the dimensionless variables introduced in Sec. 2. For the elastic 
waves Ji and J2, the relevant quantities, as we know, change as follows: 

for the longitudinal wave 

Au,, == - 11 (k,)” cAvl, Au,, = Aa,, = p(kJ-l ,F,;t,“” cdv, 

Au:! = Jr3 = As,, = AS13 = 0, 2 = I, + JJs (4.1) 

for the transverse wave 

AsI = --I’ (,‘Q,)-~ Au?, As,, = -p @J-l Au, (4.2) 
Au, = AaIl = Aoz2 = 4u,, = 0 

The solution of the oblique shock problem is a curve r in the space oij that joins the initial point 
oij” with the point whose three coordinates uif (i = 1, 2, 3) are equal. The curve r consists of 
sections produced by the shocks J1 and J2, which are defined by (4.1) and (4.2), and sections 
described by the plastic simple waves, i.e. integral curves of the system of ordinary differential 
equations (1.4). The order of the curves forming r is determined by the propagation sequences 

JI&J;!&. 
We have shown in Sec. 2 that the variation of all quantities in the plastic simple wave is known if 

we know the trajectory of variation of r, 7, i.e. the integral curve of Eq. (2.2). By formulas (4.1) and 
(4.2), the variation of all quantities in the elastic shock waves J1 and J2 is expressible in terms of the 
increments of the variables r and 7, respectively, (the increment of s12 in the wave J2 must be 
specified separately). Therefore, the required curve r is determined by its projection on the r, T 
plane. The solution is thus constructed in the r, T plane. 

In order to satisfy the boundary conditions of the problem, it is helpful also to use the ull, s plane. 
Indeed, if the projection on the ull, s plane of some curve r of the form shown above joins the 
initial point ulio, so = ((~~~9~ + (~~a’)~)~‘* with the final point ulif, sf = ((sizf)’ + (~~~~~~~‘~, then this 
curve r is a solution. 

We will first show that if at the final point of the solution s = sf, then a correct choice of the 
variation of si2 in the shock J2 ensures s12 = s1 /, si3 = si3f at the final point. Indeed, ifs = s, behind 
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FIG. 5. 

the wave Si , then any point of the circle s1z2 + ~13’ = si* is reachable in the wave J2 in the s12, s13 
plane, including the pair of points N’ = (~~2, ~2) (i = 1, 2) defined by the condition si2’/s1si = 
sizf/.siJf. Uniqueness of the shock J2 is ensured by the condition sgnslz’ = sgnsil. In this case, by 
(1.6), we have at the final point of the solution s12 = sizf, s13 = srj. 

By the last but one relation in (1.4) and formulas (2.1), (4.1) and (4.2), the projection of the 
loading surface on the uil , s plane has the form 

(4.3) 

Note that without loss of generality we may take n2 = 0. 
Indeed, from relationships (1.4) and (4.1)-(4.3) it follows that the variation of alif, uii’, crzz”, ~33’ 

for aif- ullo = const, r. = const, y. = const does not affect the solution. Therefore, if we leave 

Qif=: oi1*, ro, y. constant and change ui(, U1lO, (J22°, u330 so that n2 = 0, the solution remains 
unchanged. Also note that by symmetry [which follows from relationships (2.8) and (4.1)-(4.3)], we 
need only consider the case ulro > 0, or f> 0. 

Thus, by virtue of the above remarks, the projection of the solution on the ull, s plane lies in the 
first quadrant, and a part of the initial loading surface is projected into the arc PA' of the ellipse 
(4.3) (Fig. 5) (the point A' is where the shock fi reaches the loading surface). 

Assume that the initial state is represented in the r, T and ull, s planes by the point Mi, Ml’, 
respectively, which lie inside or on the loading surfaces (Figs 5 and 6). If the point Mz' 
corresponding to the final state in the ull, s plane lies inside or on the boundary of the figure 
D’ A’ L'O, then the solution is trivial: it consists of two elastic shocks Ji and J2. If the point M2' lies 
outside this figure, then the form of the solution is determined by the region that contains this point, 
Let us demonstrate this assertion. 

FIG. 6. 
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Using the family of curves shown in Figs 2 and 4, we can generate a simple wave from any point 
on the initial loading surface DA, as shown in Sec. 3, and construct its projections on the u1 1 , s and 
~11, T planes. From the point A, where the shockJ1 reaches the loading surface, we generate a slow 
and a fast simple wave, AB1 and AB2, respectively. The projections of these waves on the IJ~ 1 , s 
plane are A’&’ and A’ B2’_ 

The figure DALB1 B2 is partitioned by the waves AB1 and AB2 into the regions 1-3 shown in 
Fig. 6. The corresponding part of the first quadrant in the oil, s plane is also petitioned by the 
waves A’ B1’ and A’ B2’ into the regions l’-3’, shown in Fig. 5. 

Note that if the point M2’ lies in the region l’, then the final point of the solution Mz in the r, 1 
plane lies in the region 1 and the solution has the form J,&S, . Similarly, if the point M2’ lies in one 
of the regions 2’, 3’, then the solution, correspondingly, has the form JIS,Jz&, JI S,.& . 

We will show how to construct the solution for the case when the point i&’ is in the region 1’. 
Any point R2 on the segment AD can be reached from M1 by elastic shocks J1-M1 RI and JI-R1 R2. 
Displace the point R2 along AD in the direction from A to D until the projection on the ull , s plane 
of the slow wave originating from the point R2 reaches the point Mz’. Using the projection of this 
simple wave on the oll, T plane, we obtain from the value of a,$ the final value of the variable 7, 
which is I(&). We have thus obtained the solution M1 RI R,Mz. 

If the point M2’ is in the region 2’, then displace the point R3 along the fast simple wave ABI in 
the direction from A to B, until the projection on the ull, s piane of the slow simple wave 
originating from the point R3 reaches the point Mz’. In this case, the solution is ~~AR~~~. For the 
case when the point M2’ is in the region 3’, the solution is constructed similarly. 

We thank Ya. A. Kamenyarzh for useful advice and discussions. 
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